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Topics to cover
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• Parameters to optimize in tokamak reactors

• Parameter space for tokamak operations & its limits

- Density limits – high and low

- Safety factor (qa) limit

- Beta limits – ideal and resistive 

- Vertical stability limits

• Actuators available for control of scenarios and their constraints

• Parameter optimization in ITER scenarios – few examples

• Summary



What tokamaks try to optimize?
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• Goal of a fusion reactor, e.g. ITER is to maximize fusion power output

• Fusion power density in a 50-50 DT plasma :

• Remember  plasma beta
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nD: D density, nT: T density
<σv>: average D-T fusion reaction cross-
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εDT: 17.6MeV
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Both fusion power output and confinement time has strong dependence on B, R, p, and Ip

• Thus total fusion output:   Pfus∝ <p2>V∝ β2B4V

• Global Energy Confinement Time of ELMy H-mode IPB98(y,2):

Ultimately it aims at optimizing the Lawson Parameter: nTeτE
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Operational Limits on Plasma Density
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• Low qa limit is a limit on the plasma 

current. Higher current destabilizes 
external kink modes – results in plasma 
disruptions

• low density limit is due to generation of 
runaway currents: too low densities 
less collisions  electron get accelerated 
to very high (relativistic) energies

• High density limit: Greenwald/Hugill 
density limit is a radiation limit. Too high 
densities less edge Te  high impurity 
radiation from plasma edge, formation of 
MARFEs - results in plasma disruptions. 
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Operational Limits on Plasma Density
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Hugill diagram: 1/qa vs. Murakami parameter (nR0/BT)
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Y-S. Na et al, P4.028,
41st EPS Conf. 2014H-mode

L-mode

• Greenwald limiting density has a simple 
expression:

n
GW

(1020m-3) =
I
p
(MA)

pa2(m)
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M. Greenwald et al, NF 28 (1988) 2199
M. Greenwald PPCF 44 (2002) R27–R80



Operational Limits on Plasma Density
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Hugill diagram: 1/qa vs. Murakami parameter (nR0/BT)
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• High density limit can be enhanced with 
improved wall conditioning and plasma 
heating

• Greenwald limiting density has a simple 
expression:

n
GW

(1020m-3) =
I
p
(MA)

pa2(m)

JET Data, IPB, NF 1999
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Operational Limit on Plasma Beta
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• The limit on the maximum achievable plasma β comes from the stability of the 

ballooning modes in a tokamak 

• For circular plasmas, βmax is given by the Troyon Limit*:b
max

= 2.8
I
p

aB
t

β is in %,  Ip is in (MA), a in (m) and Bt in (T) 

IPB, NF 1999

βN much higher than 2.8 has been achieved in 

experiments with plasma shaping – elongation 

helps improve βN

For comparison between different machines, 

normalized  β is defined as

b
N

=
b

I
p
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*F Troyon et al 1988 PPCF30 1597



Parameters to Optimize in a Burning Plasma 
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• Confinement improvement by improved H98y2 = τE/τE
ELMy

• Improved normalized density : ne/nGW

• Improved radiation fraction : frad=Prad/Ploss,tot for less thermal 

power load to divertors

• Fuel dilution control through control of He ash and maintaining 

fDT = nDT/ni,tot

• Improved fusion performance by as high βN as permitted by MHD 

stability

• High non-inductive current drive fraction fNI essential for steady-

state operations 



Bootstrap Currents in High Beta Plasmas
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• Bootstrap currents are self driven currents due to interplay of 

‘banana’ trapped particles and untrapped particles 

• High bootstrap current fraction fBS essential for steady-state 

operations.

j
BS

~ e
1

B
q

dp

dr
• Remember                         , thus depends on pressure profile

C. Kessel, NF, 1994 (34) 1221

Particles execute banana orbits in 
tokamaks in collisionless plasmas

∇p

R0



Control of RWMs and ELMs
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• Resistive Wall Modes (RWMs) : Plasmas with high β, high bootstrap fraction fBS and low 

internal inductance li are prone to be unstable to external kink modes, which grow with the 

characteristic wall time, τw~L/R time of the first wall. Plasma rotation and error field 

compensation – both static and and active feedback needed to stabilize RWMs.  

ITER Correction Coils (out-vessel) 
and ELM control coils (in-vessel

• Edge Localized Modes (ELMs) : Driven by 

steep pedestal pressure in the H-mode plasmas 

due to peeling/ballooning modes. Active 

feedback with resonant magnetic perturbations 

needed to control ELMs.

• ITER will have an elaborate set of 9x3=27 ELM 

control  coils with independent power supplies and 

6x3=18 error field correction coils with 9 

independent power supplies (DC). Radial ELM 

control coils also double up for RWM control

• RWM and ELM stabilization has been 

extensively studied in the DIII-D tokamak



Multi Parameter Spider Plot for Scenario Control
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Actuators for Scenario Control & Constraints
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Actuators Constraints

Magnetic Control Central Solenoid Voltage and current saturation 
limits, total flux storage (especially 
for CS), slew rate limits, J x B forces 
on coils etc.

PF coils 

Error Field correction coils 
for control of RWMs

ELM control coils

Kinetic Control Fueling – gas puff, pellet 
fueling, NBI

Fueling, heating and CD efficiencies, 
power and current deposition 
profiles, resonance layer or RF 
waves, NB shine-through, various 
technical limits with injectors

Heating and Current Drive 
using NB, ECRF, ICRF, LH 
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Operation Space of ITER Inductive Scenario
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ITER operational space 
diagram for advanced 
inductive operation at the 
nominal ITER toroidal field of B 
= 5.3 T with Paux = 50 MW

Ratio of the plasma electron 
density to the Greenwald density

Ratio of the power loss across  
the separatrix to the predicted 
L–H threshold power
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T. Luce et al, NF, 54 (2014) 013015. 
Also in ITER Research Plan.



ITER 15MA Q=10 Inductive Scenario
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• DINA simulation of 15 MA inductive scenario with low-li and anti-saturation 
controller:

– Without anti-saturation, field on PF6 rises to 6.8 T (needs Pf6 subcooling by 0.4K)

– With anti-saturation, field on PF6 remains < 6.4 T (no Pf6 subcooling needed)

ITER_D_4CL4MP,  
STAC-10, May 2011
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– Acceptable error on position of outer divertor leg (gap-2 - inset)
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ITER Steady-state Scenario
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A.R. Polevoi, NF, 55 (2015) 063019]  

- Long-pulse operation (Q > 5, Dt > 1000 s) 

in ITER at high currents (Ip >13MA) does not 

require too high confinement (H98,y2 ~1)

- Increase of the pulse length, Dt > 1000 s, 

is possible due to reduction of plasma 

density 

- Following increase of electron 

temperature Te, CD efficiency also improves

- No significant change in transport 

properties



Simulations of ITER non-Inductive Scenarios
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S.H. Kim et al 2021 Nucl. Fusion 61 076004



ITER Steady-State Scenarios…(1)
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CORSICA Simulations of fully non-inductive operation scenario for Ip=10MA with 
49.5MW NB and 20MW EC power
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S.H. Kim et al 2021 Nucl. Fusion 61 076004



ITER Steady-State Scenarios…(2)
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Note that all the CS and PF coil currents, Voltages, Fields and Forces are within the  
allowable limits
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S.H. Kim et al 2021 Nucl. Fusion 61 076004



Operating space in Hybrid Scenario
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TSC

• Equilibrium operating space for hybrid scenario at Ip = 12.5 MA shows 
additional constraint on ICS3L can expand operating space at low-li

ITER_D_4CL4MP,  STAC-10, May 2011



Summary
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• Parameter Optimization for various operation scenarios is a 
complex problem

• Often the parameters fight against each other for achieving 
ultimate goal of fusion performance – detailed analysis of 
comparative benefits needs to be done using scenario 
simulations

• Open field of research through integrated modeling, 
experiments and analysis of experimental data

• ITER, JT-60SA and existing machines like DIII-D, KSTAR & EAST 
are great platforms for scenario control, modeling and 
optimization studies



Thank You!!
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